This set of functions can be used for calculations that involve node pairs.
If the calculateable measure is not symmetric the function will come in two
flavours, differentiated with _to
/_from
suffix. The *_to()
functions
will take the provided node indexes as the target node (recycling if
necessary). For the *_from()
functions the provided nodes are taken as
the source. As for the other wrappers provided, they are intended
for use inside the tidygraph
framework and it is thus not necessary to
supply the graph being computed on as the context is known.
node_adhesion_to(nodes)
node_adhesion_from(nodes)
node_cohesion_to(nodes)
node_cohesion_from(nodes)
node_distance_to(nodes, mode = "out", weights = NULL, algorithm = "automatic")
node_distance_from(
nodes,
mode = "out",
weights = NULL,
algorithm = "automatic"
)
node_cocitation_with(nodes)
node_bibcoupling_with(nodes)
node_similarity_with(nodes, mode = "out", loops = FALSE, method = "jaccard")
node_max_flow_to(nodes, capacity = NULL)
node_max_flow_from(nodes, capacity = NULL)
The other part of the node pair (the first part is the node defined by the row). Recycled if necessary.
How should edges be followed? If 'all'
all edges are
considered, if 'in'
only inbound edges are considered, and if 'out'
only
outbound edges are considered
The weights to use for calculation
The distance algorithms to use. By default it will try to
select the fastest suitable algorithm. Possible values are "automatic"
,
"unweighted"
, "dijkstra"
, "bellman-ford"
, and "johnson"
Should loop edges be considered
The similarity measure to calculate. Possible values are:
"jaccard"
, "dice"
, and "invlogweighted"
The edge capacity to use
A numeric vector of the same length as the number of nodes in the graph
node_adhesion_to()
: Calculate the adhesion to the specified node. Wraps igraph::edge_connectivity()
node_adhesion_from()
: Calculate the adhesion from the specified node. Wraps igraph::edge_connectivity()
node_cohesion_to()
: Calculate the cohesion to the specified node. Wraps igraph::vertex_connectivity()
node_cohesion_from()
: Calculate the cohesion from the specified node. Wraps igraph::vertex_connectivity()
node_distance_to()
: Calculate various distance metrics between node pairs. Wraps igraph::distances()
node_distance_from()
: Calculate various distance metrics between node pairs. Wraps igraph::distances()
node_cocitation_with()
: Calculate node pair cocitation count. Wraps igraph::cocitation()
node_bibcoupling_with()
: Calculate node pair bibliographic coupling. Wraps igraph::bibcoupling()
node_similarity_with()
: Calculate various node pair similarity measures. Wraps igraph::similarity()
node_max_flow_to()
: Calculate the maximum flow to a node. Wraps igraph::max_flow()
node_max_flow_from()
: Calculate the maximum flow from a node. Wraps igraph::max_flow()
# Calculate the distance to the center node
create_notable('meredith') %>%
mutate(dist_to_center = node_distance_to(node_is_center()))
#> # A tbl_graph: 70 nodes and 140 edges
#> #
#> # An undirected simple graph with 1 component
#> #
#> # Node Data: 70 × 1 (active)
#> dist_to_center
#> <dbl>
#> 1 1
#> 2 1
#> 3 1
#> 4 5
#> 5 6
#> 6 6
#> 7 3
#> 8 7
#> 9 7
#> 10 4
#> # ℹ 60 more rows
#> #
#> # Edge Data: 140 × 2
#> from to
#> <int> <int>
#> 1 1 5
#> 2 1 6
#> 3 1 7
#> # ℹ 137 more rows